

Fraunhofer Institute for Machine Tools and Forming Technology IWU

FLOIM: Flexible Optical Injection Moulding of optoelectronic devices

Challenges in the machining of micro-optical mould inserts

Profile of Fraunhofer IWU

Research under the heading "Resource-Efficient Production"

Founded July 1st 1991

Currently approx. 690 employees

Approx. € 45 million annual budget

Locations: Chemnitz (headquarters), Dresden, Zittau, Wolfsburg, Leipzig

3 scientific fields:

|--|

Profile of Fraunhofer IWU Your benefits

Custom-fit solutions

System modules, which can be individually composed according to your initial situation, allow for optimal adaption considering the desired outcome.

Specific benefits

Our **aim** is the creation of smart and efficient **solutions of production technology** with **concrete added value** regarding your specific requirements.

Fraunhofer – key to success

The constantly updated scientific input, as well as the close cooperation and the cross-linking with the industry, support the successful development of solutions suitable for series production.

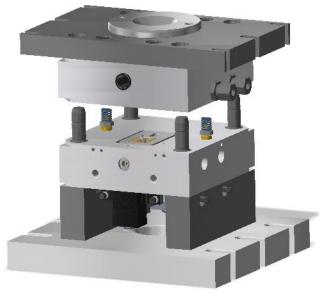
Profile of Fraunhofer IWU Competence from A to Z

Automation	Sheet metal forming	Additive manufacturing processes	Industrie 4.0
Determining characteristic values and material characterization	Lightweight construction	Bulk metal forming	Mechatronics and adaptronics
Medical engineering	Micro and precison manufacturing		
Assembly technology and robotics	Production management		
Hydrogen and fuel cell production	Simulation	Cutting and removal	Acoustical engineering
Thermal and mechanical joining	Virtual and augmented reality	Machine tool	Tool and mold making

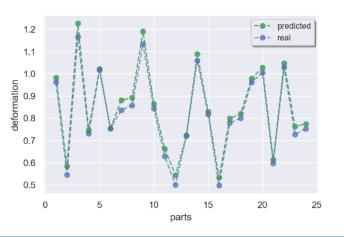


Fraunhofer IWU in FLOIM project

Three main topics in the R&D framework


Structuring of mould inserts with optical features by machining

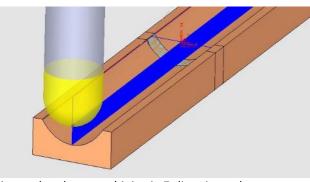
 micro milling, laser machining and laser structuring are combined for producing micron and sub-micron features on moulds in cooperation with further partners

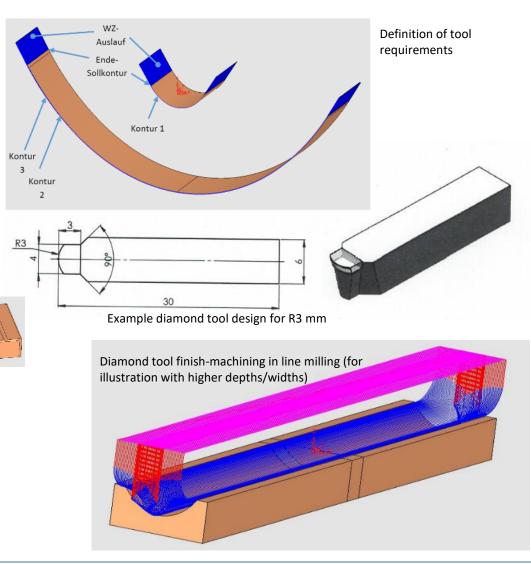

Modular mechatronic component for fine positioning

 compensate for insertion errors and geometric tolerances of the components to be overmoulded

Data-driven methodologies for quality and functionality control

- machine learning algorithms for process prognosis and improvement
- system architectures for cognitive control powered quality assurance

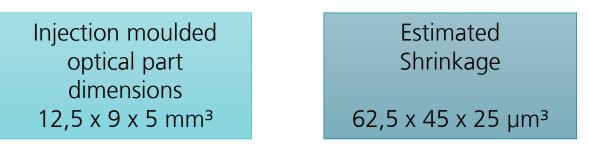


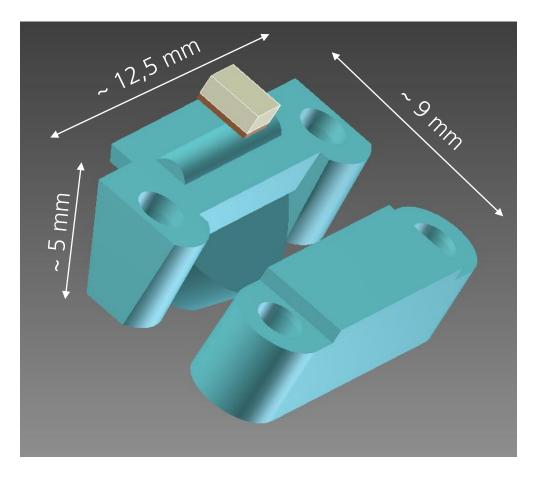

Machining of cylindrical lenses for optical encoder demo

Tool strategies, design and procurement

- Two types of diamond tools for precision machining of the lens geometry
 - Contour based tool for direct milling
 - Radius tool for line milling
- Definition of tool requirements/design for small and big lens
- Radius tools R3mm and R0.5mm available for machining of lens geometries
- Transfer of lens geometry on known mould inserts (22x28mm)
- CAM-based NC-coding for line machining with small cutting depths and cutting widths of only some micrometer

Diamond tool pre-machining in Z-direction only

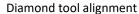




Machining of cylindrical lenses for optical encoder demo

Shrinkage estimation for mould insert manufacturing

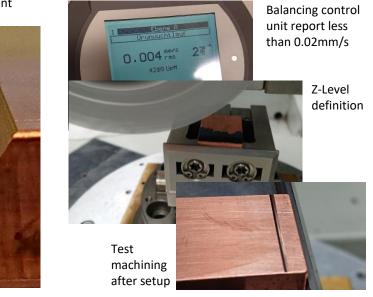
- Systematic dimensional deviations between mould and injection moulded part
- Influences have their origin in material properties of the tool, the plastic and the process control
 → form deviations between mould and part geometry
- Compensation by scalar correction factor K for the tool geometry
- Shrinkage of polycarbonate PC typically 0,5..0,8 %
- For high surface qualities a high mould temperature is assumed, therefore the shrinkage estimation is calculated with 0,5 % for demo application


Machining of cylindrical lenses for optical encoder demo Milling tests

- Set-up micromachining center for diamond machining
- Diamond tool adaption requires high accurate balancing of air bearing spindle system with less than 0.02 mm/s
- Diamond machining with most suitable parameters of the pre-test especially on OF-OK Cu mold inserts (also Ms58, AIMgSi1 ...)
- Target is machining of real lens geometries under consideration of requirements on accuracy of geometry and surface quality

finish machined

pre machined



Detail of finish machined lens

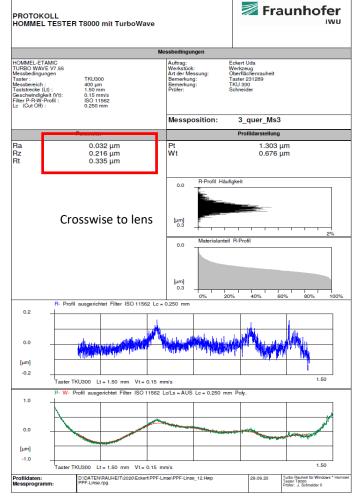
Set-up for balancing and machining

Example of complete lens geometry

finish machined

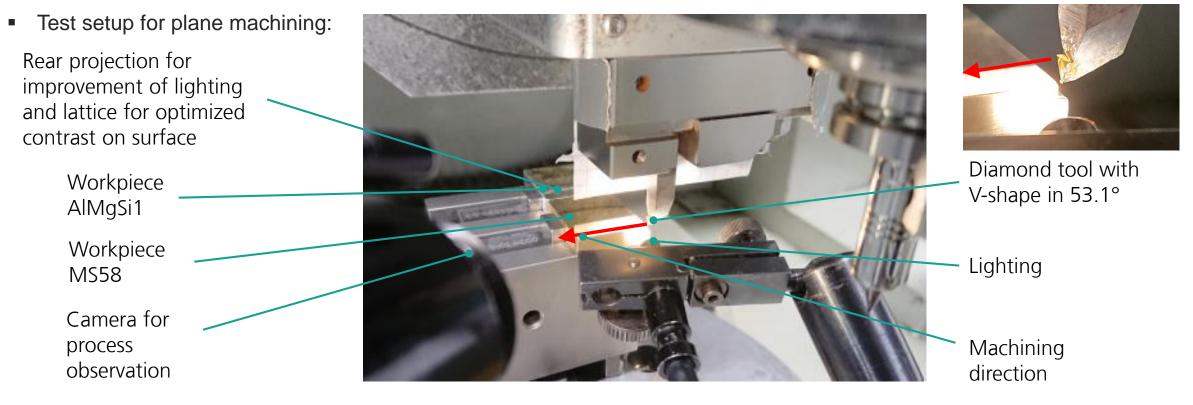
Public information

Machining of cylindrical lenses for optical encoder demo Quality control


- Tactile measurement of the surface quality confirm results of the pre-test
- Roughness level in Ra and Rz constant for all three variants of machining strategies
- High repeatability of the results
- Contour line measurement of the lens geometry following a comparison with lenses 3D-model

	Text	Ra	Rz
	1_Ms1	0,023	0,158
test machining	1_Ms2	0,021	0,146
	1_Ms3	0,023	0,162
	2_Ms1	0,024	0,157
pre machining	2_Ms2	0,021	0,146
	2_Ms3	0,023	0,179
	3_Ms1	0,023	0,178
finish machining	3_Ms2	0,023	0,152
	3_Ms3	0,022	0,167

Measurement set-up on HOMMEL T8000 for roughness and contour line measurement



along to lens

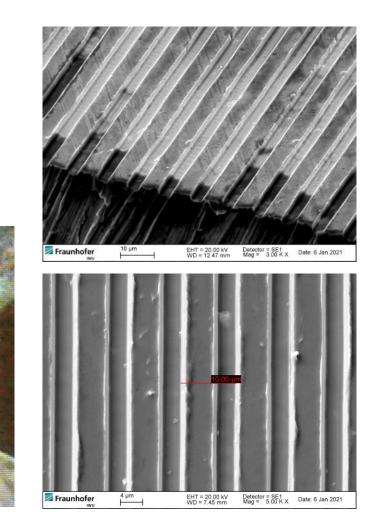
Manufacturing of gratings on molding inserts

Machining strategies

- Two options available
 - Fly-Cutting in grid milling version \rightarrow precision problems regarding zero definition and thermal effects
 - Plane machining (Planing) with NON rotating diamond tool on diamond pre-machined surface

Manufacturing of gratings on molding inserts

Impressions on realization of plane machining


Single line machining in MS58 for setting zero level

Grating

machining

in MS58

Public information

Manufacturing of gratings on molding inserts

Molding results - SEM analysis of molded parts in polycarbonate

Field 3 – top view 10 µm Fraunhofer EHT = 18.00 kV WD = 9.19 mm Fraunhofer 4 µm Detector = SE1 Mag = 5.00 K X Date: 25 Jan 2021


10 µm 🜌 Fraunhofer EHT = 18.00 kV WD = 11.99 mm Fraunhofer 4 µm Detector = SE1 Mag = 5.00 K X Date: 25 Jan 2021

Field 3 – isometric view

Mould inserts for Optical Encoder Demo

Impressions of first Demostrator tests

14,77

Contact

Dr. Jan Edelmann Functional Surfaces and Micromanufacturing Tel. +49 371 5397 - 1931 Fax + 49 371 5397 - 61931

<u>jan.edelmann@traunhoter.de</u>

Fraunhofer IWU Reichenhainer Straße 88 09126 Chemnitz www.iwu.fraunhofer.de

Fraunhofer IWU Fraunhofer Institute for Machine Tools and Forming Technology IWU Thanks for your kind attention!